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Abstract—We study the problem of optimally coordinating
multiple fixed-wing UAVs to perform vision-based target track-
ing, which entails that the UAVs are tasked with gathering
the best joint vision-based measurements of an unpredictable
ground target. We utilize an analytic expression for the error
covariance associated with the fused measurements of the target’s
position, and we employ stochastic fourth-order models for all
vehicles, thereby incorporating a high degree of realism into the
problem formulation. While dynamic programming can generate
an optimal control policy that minimizes the expected value of the
fused geolocation error covariance over time, it is accompanied
by significant computational challenges due to the curse of di-
mensionality. In order to circumvent this challenge, we present a
novel policy generation technique that combines simulation-based
policy iteration with a robust regression scheme. The resulting
control policy offers a significant advantage over alternative
approaches and shows that the optimal control strategy involves
coordinating the UAVs’ distances to the target rather than their
viewing angles, which had been a common practice in target
tracking.

I. INTRODUCTION

Small unmanned aerial vehicles (UAVs) are relatively in-
expensive mobile sensing platforms capable of reliably and
autonomously performing numerous tasks, such as mapping,
search and rescue, surveillance and tracking, and real-time
monitoring. One problem of particular interest is that of
using small, fixed-wing UAVs to perform vision-based target
tracking, which entails that one or more camera-equipped
UAVs is responsible for autonomously tracking a moving
ground target.

In vision-based target tracking, image processing software
determines the centroid pixel coordinates of a target moving
in the image frame. Given these pixel coordinates, the intrinsic
and extrinsic camera parameters, and the terrain data, one can
estimate the three-dimensional location of the target in inertial
coordinates and compute the associated error covariance. This
is the process of geolocation for video cameras [1]. The
geolocation error is highly sensitive to the relative position
of a UAV with respect to the target. When a UAV is far
from the target, relative to its height above the target, the
associated error covariance is significantly elongated in the
viewing direction. The smallest geolocation error comes when
the UAV is directly above the target, in which case the
associated covariance is circular. While a UAV would ideally
hover directly above the target to minimize the error, the

S. A. P. Quintero and J. P. Hespanha, Department of Electrical and
Computer Engineering, University of California, Santa Barbara, CA 93106,
USA, {quintero, hespanha}@ece.ucsb.edu.

M. Ludkovski, Department of Statistics and Applied Probability,
University of  California, Santa Barbara, CA 93106, USA,
ludkovski@pstat.ucsb.edu.

relative dynamics between a UAV and target typically preclude
this viewing position from being held over a period of time.

To mitigate the effects of a single UAV’s inability to
maintain close proximity to the target, one can employ mul-
tiple UAVs to gather the best joint measurements. In this
scenario, the objective is to minimize the fused geolocation
error covariance of the target position estimate obtained by
fusing the individual geolocation measurements. Thus, in this
work, we seek optimally coordinated behavior between two
UAVs aimed at improving the estimate of the target state.

The fused geolocation error is small when at least one UAV
is close to the target and only slightly less when both aircraft
are directly above the target. When both UAVs are far from
the target relative to their altitudes, the fused geolocation error
is greatly reduced when the UAVs have orthogonal viewing
angles, though this error is still significantly greater than when
at least one UAV is on top of the target. Of course, these
configurations are static, yet in a realistic scenario, the target
motion is unpredictable and the UAVs have limited control
effort and experience stochasticity in their dynamics.

The purpose of this work is thus to present and study an
effective solution to the problem of optimally coordinating
two UAVs to track a moving ground target under fairly
realistic conditions. More specifically, the objective for the
camera-equipped UAVs is to gather the best joint vision-
based measurements of a randomly moving ground target
whilst themselves being subject to limited control effort and
experiencing stochasticity in their dynamics. The class of
UAVs under consideration are hand or catapult launched fixed-
wing aircraft that fly at a constant altitude and have an
autopilot that regulates roll angle, airspeed, and altitude to
the desired setpoints via internal feedback loops. Furthermore,
these underactuated aircraft are assumed to fly at a constant
airspeed since the range of permissible airspeeds for such
small aircraft may be very limited, as noted in [2] and §5.1
of [3]. In addition, frequent changes in airspeed may be either
undesirable for fuel economy or simply unattainable. The roll
angle setpoint is hence the sole control input that affects
the horizontal plant dynamics. The target is modeled as a
nonholonomic vehicle that randomly turns and accelerates.

As determining the optimal control policy (feedback law) is
a challenging problem in the area of stochastic optimal control,
we now take note of the numerous solutions that have been
proposed over the past decade for similar problems in the area
of target tracking.

A. Related Work

Much research has proposed coordinated target tracking
controllers in a deterministic setting without directly optimiz-



ing mission performance with respect to a desired objective
function. For two UAVs, a generally accepted practice is to
have the UAVs orbit the target at a nominal standoff distance
(to remain outside a critical threat range) and maintain an
angular separation of 90°. The 90° separation angle minimizes
the joint / fused geolocation (target localization) measurement
error for the given standoff distance, as the individual mea-
surement error ellipses are orthogonal [4]. These principles
give rise to what is henceforth referred to as cooperative (or
coordinated) standoff tracking, which constitutes the majority
of the work in the general area of coordinated target tracking.
When more than two UAVs are considered, the goal generally
becomes having the group achieve a uniform angular separa-
tion on a circle centered at the target.

Standoff tracking has been a longstanding goal in the
general area of target tracking and has been addressed using
numerous approaches that include “Good Helmsman” steering
[5], Lyapunov guidance vector fields [6], nonlinear model
predictive control [7], nonlinear feedback [8], and methods
combining vector field guidance with adaptive control [9],
[10]. Since multiple fixed-speed aircraft cannot maintain a
uniform angular spread at a fixed distance from a constant
velocity target, works such as [3] and [11] have explored the
notion of spreading agents uniformly in time along a periodic
trajectory at a fixed distance from the moving target.

A number of approaches have employed stochastic optimal
control to mitigate the effects of stochastic target motion while
also respecting a maximum turn-rate / bank angle. In [12],
Anderson and Milutinovi¢ studied the problem of optimal
standoff tracking in the continuous time setting and model the
target as a Brownian particle and the UAV as a deterministic
Dubins vehicle. By minimizing the expected cost of the total
squared distance error discounted over an infinite horizon, the
authors generate an optimal bang-bang turn-rate controller that
is highly robust to unpredictable target motion. In [13], the
authors studied the problem of having a single UAV optimally
perform vision-based target tracking with a limited sensing
region, wherein the cost objective was a function of the desired
viewing geometry. A comparison was made between a game
theoretic approach (addressing evasive target motion) and a
stochastic optimal control approach (addressing random target
motion) and showed that the latter approach performed better
in actual field tests. Hence, in the present work, we use a
refined version of the stochastic kinematic UAV model from
[13] and adopt a similar stochastic target model.

Others have employed optimal control to study optimal UAV
coordination when the objective is to improve target state
estimation. Miller et al. pose the problem of multiple UAVs
tracking multiple targets as a partially observable Markov
decision process (POMDP) in [14] and present a new approx-
imate solution, as nontrivial POMDP problems are typically
intractable to solve exactly [15]. Stachura et al. [16] studied
the problem of two variable-airspeed UAVs with bearing-only
sensors tracking a stochastic ground target in the presence
of packet losses in the communication with the base station,
where target state estimation takes place. The solution involved
an online receding horizon controller that maximized the
expected information (inverse covariance) of the target state

estimate in an extended information filter over a short planning
horizon, showing that one UAV will act as a relay to the
base station when the target is far from the base. In [17],
Ding et al. studied the problem of optimally coordinating two
camera-equipped Dubins vehicles with bang-off-bang turn-
rate control to maximize the geolocation information of a
stochastic ground target over a short planning horizon. The
results showed that a 90° separation in the viewing angle was
essential in the case of terrestrial pursuit vehicles and less
pronounced with airborne pursuit vehicles.

We emphasize the fact that the preceding optimal con-
trol approaches illustrate a trend among optimization-based
coordination strategies. Namely, shorter planning horizons
are often considered to reduce the computational complexity
of the dynamic optimization. While this is justified from a
pragmatic standpoint, short horizons are not adequate for the
cost function considered here. In particular, since the main
feature of the cost function is that it (in effect) penalizes the
minimum UAV distance to the target, a short planning horizon
inhibits the UAVs from realizing the long term benefits of
distance coordination, i.e., keeping their peak distances from
the target out of phase. Moreover, if the target is traveling
considerably slower than the UAVs, the aircraft must perform
loops to remain close to it and must realize the long term
benefit of doing these loops in a coordinated fashion.

In [18], however, the authors optimized the coordination
of two UAVs over long planning horizons of at least one
minute by minimizing the fused geolocation error covariance,
thereby gathering the best joint vision-based measurements
of the target. The results showed that coordination of the
distances to target is more effective for achieving the said goal
than the traditional practice of solely coordinating viewing
angles, thus motivating the use of optimization-based control
strategies with longer planning horizons. These studies were
conducted in a deterministic setting for UAVs that used bang-
off-bang turn-rate control to track a constant-velocity target.
Lastly, we note that a number of works including [19] and
[20] have proposed using sinusoidal turn-rate control inputs
that approximate the optimal behavior of [18] at higher speeds;
however, our tests indicate that the proposed oscillatory control
strategies appear to be non-robust to stochastic target motion
while roll dynamics are not considered.

In all of the preceding works, at least one or more as-
sumptions are made that impose severe practical limitations.
Namely, the works mentioned thus far assume at least one of
the following:

1) Coordinated circular trajectories are optimal, namely
those trajectories resulting from standoff tracking.

2) Input dynamics are first order and roll dynamics have
been ignored.

3) The UAV airspeed can be changed quickly and reliably
over a significant range

4) Target motion is predictable

5) Short/greedy planning horizons are adequate for optimal
tracking

The present paper removes all of these assumptions to promote
a more practical solution that yields optimal coordination



under more realistic conditions, namely higher order stochastic
dynamics with explicit input constraints.

B. Contributions

To remedy the aforementioned simplifications / assump-
tions, we formulate a stochastic optimal control problem
whose objective is for two fixed-wing UAVs to gather the
best joint vision-based measurements of a randomly mov-
ing ground target over a sufficiently long planning horizon.
The cost function utilizes an analytical expression for the
geolocation error covariance while fourth order stochastic
kinematic models are utilized for all vehicles to describe
realistic vehicle dynamics. More specifically, the stochasticity
in the ground vehicle model encompasses the unpredictable
nature of the target motion while that of the UAV model
addresses environmental disturbances, e.g., wind gusts, as well
as unmodeled dynamics. Most importantly, this aircraft model
has produced successful field test results in related target
tracking applications reported in [13] and [21]. Lastly, an
upper limit is imposed on the maximum absolute roll-angle
setpoint, which is the sole control input for each aircraft.

To determine the optimal control policy, one must solve a
moderate dimensional stochastic optimal control problem for
which grid-based approximations to the dynamic programming
value function are infeasible. Hence, we present a regression-
based dynamic programming technique that has been adapted
from the simulation-based policy iteration technique known
as regression Monte Carlo (RMC). More specifically, the
original RMC algorithm has been modified to become a
policy generation technique so as to remove the need for
an initial policy that is close to the optimal. In addition, to
address the high dimensionality of the system dynamics, we
use a partitioned robust regression scheme (based on work
in [22]) that is both fast and scalable with the number of
Monte Carlo simulations. Since the overall method generates
an approximately optimal control policy offline, this controller
can be readily implemented in realtime. While the original
RMC algorithm has been successfully applied to stochastic
control problems in finance and epidemic management, here
we demonstrate its utility for high-dimensional autonomous
vehicle applications.

Lastly, we provide a thorough demonstration of the nature
and performance of the resulting control policy. First, we show
the benefits of the proposed approach over alternative methods,
including an uncoordinated control strategy in which the mul-
tiple UAVSs solve independent optimizations and (non-optimal)
stand-off tracking. Second, we show that while viewing-angle
coordination is certainly facilitated by the optimal policy, the
more pronounced behavioral characteristic of the optimal strat-
egy is the coordination of distances to the target. Overall, we
show that optimization-based control techniques can produce
results that differ from and significantly outperform traditional
techniques relying on heuristics.

C. Paper Outline

The remainder of the paper is organized as follows. Sec-
tion II describes the main components of the stochastic optimal

control problem, namely the stochastic kinematic models for
the vehicles, the fused geolocation error covariance, and the
overall state space. Section III firstly provides an overview
of the basic dynamic programming solution to the problem
and secondly details the more sophisticated regression Monte
Carlo algorithm. The remainder of the section is devoted to
describing the partitioned robust regression tool. Section IV
discusses some of the parameters and modifications to the
algorithm that are specific to the present target tracking
application. Section V opens with a description of the overall
simulation setup for a realistic scenario. The remainder of
the section provides a comparison with alternative methods
to establish the benefit of the proposed approach; the section
concludes with an analysis of the coordination behavior. Sec-
tion VI provides conclusions of the overall work and discusses
opportunities for future research.

II. PROBLEM FORMULATION

Consider a group of two UAVs tasked with autonomously
tracking an unpredictable moving target vehicle using gim-
baled video sensors. The UAVs fly at a constant altitude and
fixed nominal airspeed yet experience stochasticity in their
dynamics. The target is a nonholonomic ground vehicle that
moves on the ground and exhibits stochasticity in both its
turning and acceleration. The main objective is to optimize the
coordination of the UAVs to gather the best joint vision-based
measurements of the target. Since all vehicles experience
stochasticity in their dynamics, the dynamic optimization is
inherently a stochastic optimal control problem, whose key
components are a description of the stochastic evolution of the
states and the cost associated with each state. Accordingly, we
first describe the stochastic kinematic models for the UAVs and
target and then discuss the video measurement model and the
associated geolocation error covariance, which will constitute
the cost.

A. Overview of Stochastic Dynamics

The UAV and target states are assumed to evolve stochas-
tically according to discrete-time Markov Decision Processes.
Accordingly, the probability of transitioning from UAV j’s
state &; at the current time k£ to the next state 5} at time
k + 1 under control action u; is given by the controlled state
transition probability function p, (& |&;,u;). For simplicity,
we assume that the UAVs have identical stochastic kinematics,
though this can be easily generalized to a heterogenous team.
Likewise, the probability of transitioning from the current
target state 7) to the next target state 1’ is given by the state
transition probability function py(n’ | 7).

Rather than deriving explicit formulas for these state tran-
sition probabilities, which are not needed for our approach,
we use the agents’ kinematics to draw Monte Carlo samples
Y*““, él’w ,and 79, i € {1,2,...,N,}, from the condi-
tional probability density functions of UAV 1, UAV 2, and the
target, respectively. These Monte Carlo samples provide an
empirical characterization of the stochastic dynamics of the
overall system’s state z, which includes UAV states relative to
those of the target and evolves according to a controlled state



transition probability function p(z’ |z, u). The ability to sam-
ple this state transition probability will suffice to effectively
approximate the dynamic programming solution.

B. UAV Dynamics

In practice, the UAVs are subject to environmental distur-
bances, such as wind gusts, that introduce stochasticity into
the dynamics. Although a real UAV’s kinematics are most
accurately described by a 6 degree-of-freedom (DoF) aircraft
model, we use a 4-state stochastic model of the kinematics, in
which stochasticity accounts for the effects of both unmodeled
dynamics (arising from the reduced 4™ order model) and envi-
ronmental disturbances. The model was successfully employed
in field tests both for a single UAV performing vision-based
target tracking with sensing limitations in [13] and for flocking
with multiple UAVs in [21].

While the majority of the work on target tracking uses
continuous-time motion models, this work treats the optimiza-
tion in discrete time. Thus, each UAV is initially modeled by
fourth-order continuous-time dynamics, and then a T§-second
zero-order hold (ZOH) is applied to each UAV’s control input
to arrive at the discrete-time dynamics for the aircraft.

Each UAV is assumed to have an autopilot that regulates
roll angle, airspeed, and altitude to the desired setpoints via
internal feedback loops. In our model, UAV j flies at a fixed
airspeed s; and at a constant altitude h; above the ground.
UAV ;s planar position (z;,y;) € R? and heading v; € S*
are measured in a local East-North-Up (ENU) earth coordinate
frame while its roll angle ¢; € S' is measured in a local
North-East-Down (NED) body frame. In the latter coordinate
frame, the x-axis points out of the nose, the y-axis points
out of the right wing, and the z-axis completes the right-
handed coordinate frame. As in [13] and [21], the roll/bank
angle of the aircraft is the only controllable state that affects
the horizontal plant dynamics. The roll angle is controlled
through setpoint control, which entails that a given control
policy determines the desired roll angle w; that is provided to
the autopilot’s low-level control loops.

The development of the stochastic discrete-time kinematic
model for the UAV begins with the deterministic continuous-
time model:

T scosY
dl vy _ ssin 0
N —(ag/s)tan¢ |’

¢ f(o,u)

where o, denotes the acceleration due to gravity and the
subscript j denoting the UAV index has been omitted, as the
same dynamical model is used for both UAVs. The quantity
f(@,u) denotes the roll dynamics, and could be, for example,
f(o,u) = —ap(¢ —u) with ag > 0. In this case, 1/ay > 0
can be regarded as the time constant corresponding to the
autopilot control loop that regulates the actual roll angle ¢ to
the current roll-angle setpoint u. However, we actually use a
much more detailed model for the roll dynamics wherein we
apply a T second zero-order hold (ZOH) on the roll-angle
setpoint v and sample roll trajectories from a high-fidelity
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Fig. 1. Monte Carlo simulations to sample roll trajectories. Once every

Ts = 2 seconds the roll-angle setpoint is randomly changed to u(kTs) €
U(r(kTs)), where each element of U (r(kTs)) occurs with equal probability
and A = 15° is the maximum allowable change in roll-angle setpoints.

flight simulator that utilizes an aircraft model with 6 degrees
of freedom. In this sampling process, we assume u € C, where

C = {0, A, £2A},

and that the changes in v from one ZOH period to the next
belong to the set {0, +A}. Thus, A > 0 is in essence the
maximum allowable change in the roll-angle setpoint from
one ZOH period to the next. In order to regulate the maximum
allowable change in the setpoint, we must keep track of the
previous setpoint uy_1 = u(kTs—Ts), where k € Zx¢. To this
end, we note that an autopilot with a properly tuned controller
for roll will approximately achieve the setpoint at the end of
the ZOH period, ie., Yk € Zso, ¢(kTs + Ts) ~ u(kTs).
Moreover, we assume this is the case and define the discretized
roll angle at time k as

r = arg min|c — ¢/,
ceC

and assume ;1 = ug, which means r; = up_1. Thus, our
requirements that uy € C and (ug — ug—1) = (ug — r%) €
{0, £ A} are summarized by requiring uy € U(ry), where for
ceC

Ue) ={c,c £ A} nC.

We sample roll trajectories from a high fidelity flight
simulator per the description of Figure 1 and generate a
collection ®(r,u) of N, roll-angle trajectories ¢;(7,r,u),
where i € {1,2,..., N} and 7 € [0, T], for each combination
of r € C and u € U(r). Figure 2 illustrates a typical collection
of roll-angle trajectories for particular values of r and w.
One should observe that all of the roll-angle trajectories in
the example approximately achieve the setpoint in accordance
with the assumption that r,1 = ug. In like manner, all of the
roll trajectories used in the model have this property. Since r
well approximates the roll angle ¢ at discrete time instances
t = kT seconds for all k € Z~(, we define the state of a UAV
as & = (z,y,9,r) € R,

To make the aircraft model more realistic we also introduce
stochasticity into the airspeed s, which is drawn from a sym-
metric triangle distribution (wherein the mode is equidistant
from the support bounds) that is centered at a nominal value of
s and has support over the interval [ps — o V6, Us+ 0 \/6],
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Fig. 2. One hundred roll-angle trajectories over a Ts = 2 second ZOH period
resulting from an increase of A = 15° from the previous roll-angle setpoint

of ug_1 = rx = —15°. Moreover, the current setpoint is ug = 0°.
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Fig. 3. Sample trajectories generated from the stochastic kinematic model
for the UAV with s distributed according to a triangle distribution with mean
s = 10 [m/s] and standard deviation os = 4/5 [m/s]. Also, Ts = 2
seconds, and A = 15°. The initial UAV state is identically zero. For each
u € U(0°) = {0°,£15°}, 1,000 sample trajectories were generated. For
each command, the vertical spread in final UAV positions is due to sampling
different roll trajectories while the horizontal spread results from stochastic
airspeed.

where o, denotes the standard deviation of the distribution.
Also, the airspeed s in (1) is assumed to be constant over each
ZOH period and independent across different ZOH periods.

This modeling technique allows us to generate samples
fN(W) for the next state &', given the current state £ and the
roll setpoint u. Specifically, the first three components of a
sample £(-%) are the implicit solution to

T 8; COS Y
i y _ s; sin
dr W _% tan (¢i(T r u))
S;

at the end of the Ts-second ZOH period with s; drawn from
the symmetric triangle distribution with mean p4 and standard
deviation o, and ¢;(,r,u) randomly selected from the set
®(r,u), where each element occurs with equal probability.
The fourth component of (%) is deterministic and is simply
7)) — 4. The samples of the UAV’s position and heading
thus have two sources of randomness: stochasticity in the
roll-angle dynamics captured by the collection of roll-angle
trajectories ®(r,u) and stochasticity in the airspeed. Figure 3
illustrates the stochastic UAV model.

C. Target Dynamics

As with the UAV state, the target state 7 is assumed to
evolve stochastically according to a Markov Decision Process,

TABLE I
STOCHASTIC TARGET MOTION PARAMETERS

Parameter: « v v 0 Wq T
Value: 05 45 125 7 0.2 2
Units: m/s2 m/s m/s m rad/s s

where the state transition probability function p, (7' |n) is
implicitly defined by the following construction for the target
motion.

The target is assumed to be a nonholonomic vehicle that
travels in the ground plane and has the ability to turn and
accelerate. Its state comprises its planar position (4, y,) € R?,
heading 1, € S', and speed v € R>( and is hence defined
as 1 == (xg4,Yq, ¥y, v). The target’s dynamics are those of a
planar kinematic unicycle, i.e.,

T4 v COS Yy
. d Yg vsiny
- = = 2
=G| v, w ; @
v a

where w and a are the turn-rate and acceleration control inputs,
respectively.

To model the behavior of an operator driving the ground ve-
hicle safely and casually, yet unpredictably, the target’s control
inputs w and a are drawn from continuous probability density
functions. These inputs are assumed to be held constant over
a Ts-second ZOH period synchronized with that of the UAVs
and independent across different sampling intervals.

The target’s acceleration a is drawn from a symmetric
triangle distribution with support over the interval [max{(v —
v)/Ts, —a}, min{(v — v)/Ts,a}], for given positive scalars
a, v, and v. The support for the distribution guarantees that
the absolute value of the acceleration does not exceed o and
that the velocity v = v + aTs at the end of the sampling
period remains in the interval [v, T].

The distribution for the target’s turn rate w is symmetric
triangular with support in the interval [—®, @], where @ > 0
is given by w := min{@,, @, }. The support for the distribution
guarantees that the target respects both the upper turn rate
limit @, = min{v/p, (v + aTs)/0} set by the target vehicle’s
minimum turning radius ¢ > 0 as well as a given maximum
allowable turn rate w, > 0. The quantity @, is typically less
than @, at moderate to high speeds and is used to further gov-
ern the target’s turning behavior beyond the inherent minimum
turning-radius limitation.

The discrete-time stochastic kinematic model is the solution
of (2) at the end of the T-second ZOH period with the accel-
eration and turn rate having been drawn from their respective
triangle distributions at the start of the ZOH period. This
kinematic model is illustrated in Figure 4 with the parameters
in Table I.

D. Target-Centric State Space

We consider a target-centric state space Z that has dimen-
sion n = 9. For j € {1,2}, we denote by t; the relative
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Fig. 4. Sample positions generated from the stochastic target motion model.
The two initial target states depicted with different colors correspond to
identical initial positions at the origin, but two distinct initial speeds of 6
and 12 [m/s]. For each initial condition, 1,000 samples are generated.

position of UAV j, which is given by

| cosyy sing T;—
Y [ fsinzzg cosz/j; ] [ ij fyj ] 3)

Also, we define the UAV j’s pose (position and heading)
relative to the target as p; = (v;,%¢,;) € R? x [—m, 7),
where v, ; = atan2(sin(y; — 1), cos(¢; — 14)) and atan2
is the four-quadrant inverse tangent function. The state vector
z € Z < R? is thus given by

z = (plyTlap277“27'U)7

where 7; and v denote UAV j’s discretized roll-angle and
the target’s speed, respectively. The overall state transition
probability p(z’|z,u), where w € U(ry) x U(rs), is given
implicitly by combining the stochastic kinematic models for
the vehicles with the preceding description of the components
of the states in Z.

E. Geolocation Error Covariance

Each UAV has a video sensor that makes image-plane mea-
surements of the target. The dominant source of geolocation
error stems from the error in the sensor attitude matrix that
relates the line-of-sight vector in the sensor frame (centered
at the UAV position) to that in the topographic coordinate
frame. This error is amplified on the ground by UAV j’s three
dimensional distance d; to the target. Hence, UAV j’s individ-
ual error covariance, denoted by P; € R?*2, is proportional
to the product of d7 and the covariance Rg € R**? of the 3-
2-1 Euler-angle sequence 6; € R3 describing UAV j’s sensor
attitude. For simplicity of notation, we take the covariance R
of each UAV’s sensor attitude angle to be constant and equal
for all UAVs, which would be the case if the UAVs had similar
sensors. The exact analytic expression for P; is derived in [18].

With the UAVs collecting independent measurements of the
target, the fused geolocation error covariance (GEC) P can be
computed according to the following relationship

Pt=> P 4)
J

The nature of the error covariances, both individual and fused,
is illustrated in Figure 5. Note that the fused covariance is
determined by three degrees of freedom, namely the planar

40r
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Fig. 5. Individual error ellipses P; and P corresponding to the vision

measurements from the blue and red UAVs having (z,y, z) coordinates (in
meters) of (—100, 0,40) and (0, 100, 45) respectively, where the latter UAV
is not shown. Also depicted by the magenta, dash-dot line is the error ellipse
‘P corresponding to the combination (fusion) of the measurements obtained

from both UAVs, and the separation angle ~.
0

180
Fig. 6. Cost function g(z) = trace(P) with the target located at the
origin and the first UAV located at three dimensional position (z,y,z) =
(100, 0, 40), where this UAV’s (z,y) position is indicated by a black “x.”
The second UAV has an altitude of 45 [m], and the (x,y) coordinates in the
plot represent its planar position.

x
12

distances from the target and the UAVs’ separation angle 7,
which is given implicitly as

t)ty = [t1]2]va]2 cos,

where the relative planar positions t; € R? are given by (3).

To minimize the estimation errors associated with the fused
GEC P, we take the objective function of the stochastic
optimal control problem to be

g(z) := trace(P), 3)

which has units of meters squared and essentially minimizes
the sum of the variances corresponding to the major and minor
axes of the fused error ellipse.

The nature of this cost function is illustrated in Figure 6
for two UAVs. Note that if the second UAV’s position is on



the x-axis, then the UAVs are collinear, which entails that
the major axes of their error ellipses are perfectly aligned.
If however, its position is on the y-axis, then the UAVs
have orthogonal viewing angles. Thus, one can see that the
UAVs certainly benefit from having orthogonal viewing angles.
However, being close to the target is even more beneficial.
For example, if the second UAV’s (x, y)-position is (0, 100),
such that the UAVs have orthogonal viewing angles, then
g(z) ~ 56 [m?]; but if the second UAV is on top of the
target, then g(z) ~ 10 [m?]. Thus, an effective coordination
strategy would be to have at least one UAV close to the target
(if possible), as a UAV’s individual GEC is smallest in this
setting and will dominate the cost through (4). The solution
to the stochastic optimal control problem will determine if
such a strategy is indeed possible and, in fact, optimal.

FE. Stochastic Optimal Control Objective

The stochastic optimal control problem is to determine

the optimal feedback control policy uf:Z — C? k €
{0,1,..., K — 1}, that minimizes
K
ﬂ@=E[29@HZw;47WEZ7 ©)
k=0

where z, = z(kTs), K € N, E[-] denotes expectation, g(-) is
given by (5), and zq, 21, . . ., 2k is a Markov Decision Process
that evolves according to the transition probability p(2’ |z, u)
determined by the models in Sections II-B and II-C and the
state definitions in Section II-D, under the feedback law u; =
15 (2x). Note that the state transition probability p(2’|z,u)
can also be written as p(zx+1 | 2k, ux ). To solve this problem,
we present a novel optimal policy generation algorithm based
upon the policy iteration technique known as regression Monte
Carlo. To describe the method, we first introduce a few basic
definitions and principles underlying dynamic programming.

III. DYNAMIC PROGRAMMING

Dynamic programming exploits the Markovian nature of the
dynamics and hinges on the notion of the value function, or
cost-to-go from state z € Z at time k € {0,1,..., K — 1},
which is defined as

Zk = Z] y

where uy € U(z) and U(z) denotes the state-dependent ac-
tion space, which we assume is finite for all z € Z throughout
this work. For k = K, one has that Vi (z) = g(z), and for
k € {0,1,..., K — 1}, the cost-to-go is computed (offline)
in reverse chronological order according to the following
recursion

Vi(z )—g(Z)+uI€1}Jlg) E[Vis1(2')] 2, u]

K
i E
min L 2 9(2¢)

Uk U4 1500+ it

= + 1
9(2) in,

fwﬁﬂzmwwzumz, )

which holds due to Bellman’s principle of optimality (see [23],
Chapter 6). As the minimization is performed, the optimal
control policy can be formed as

piy,(2) = arg min(g(Z) +E [ Vi1 (2)]| 2,u] ) (8)
uelU(z)
Performing the sequence of computations in (7) for k € {K —
1,K — 2,...,0} ultimately yields J*(z) = Vy(2), Yz € Z,
where J*(z) is the minimum value of (6) under the feedback
law (8).

A. Basic Monte Carlo Solution

A significant hurdle in computing (7) is the expectation,
i.e., the integral over the implicitly specified state transition
probability p(z’ | z,u). In standard Monte Carlo methods, this
computation is approximated through empirical averaging. In
particular, for a given z € Z, one can take

Vi(2) = g(z) + min — Z Vies1(Z

ueU(z) NN,

where the 2( are the N, Monte Carlo random samples,
extracted from the distribution p(z’|z,u). Furthermore, to
limit the computation of the value function to a finite number
of points, one may restrict the computation of the value
function Vj(z) to a finite set Z < Z having M distinct
elements. This leads to the following approximation of the
value function and optimal control policy in (7) and (8),
respectively:

Vi(2) ~ g(2) + min —kaﬂ . Z)) 9)

uelU ( z)
NSngH(q 0 Z))]7

where the computation is carried out only for z € Z and q
denotes the quantization function given by

pp(z) = arg min[g(z) +
uelU(z)

q(s, X) = arg min||s — x|y
reX

for s in R™ and a finite set X < R". To lookup the optimal
command uy for an arbitrary state z € Z\Z, one takes uj =
i (a(z, 2)).

This method is suitable for smaller stochastic optimal con-
trol problems, such as the single-UAV target tracking scenario
for which the state dimension n is 5, as demonstrated in [13].
However, such a state space quantization method is simply
infeasible for larger state spaces, such as that corresponding
to the two-UAV scenario wherein n = 9; as a result, one
must employ the more sophisticated Regression Monte Carlo
technique to determine an approximately optimal policy.

B. Regression Monte Carlo

Regression Monte Carlo (RMC) is a simulation-based policy
iteration algorithm that was introduced to stochastic control
in the context of optimal stopping by Longstaff and Schwartz
in [24] and further formalized by Egloff in [25] with additional
convergence analysis. It is suitable for moderate dimensional



stochastic optimal control problems, e.g., those having state
dimension in the 1 — 10 range, wherein one may not have
an analytic expression for the state transition probability but
can easily generate samples. The power and versatility of
RMC is underscored by its use in determining optimal policies
for managing influenza outbreaks in [26], as well as optimal
policies for autonomous vehicle coordination in the current
setting. Here we present the method in the general setting
following the description of [26]; however, we provide a
novel perspective of the algorithm. In particular, we present
RMC as a policy generation technique rather than as a policy
iteration technique and discuss its relationship to the state
space quantization method of Section III-A.

1) Policy Generation: This work utilizes the @)-value (re-
ferred to as the continuation cost in [26], or perhaps more
commonly as the Q-factor [27]), which is defined as

K
E lZ 9(ze)

=k

min
Uk+1: K—1

Qr(z,u) =

zk—z,uk—u],

where wuy41.x—1 1S shorthand notation for the sequence
Ukt1,Uk+2,---,Ug_1. The @Q-value is the expected cumu-
lative (or pathwise) cost of being at a state z at time k,
applying control action u € U(z) at that time, and then
applying an optimal policy from time k + 1 onward. Since,
forte{k+1,k+2,..., K —1}, u; is a feedback policy, i.e.,

= u¢(2¢), the optimization is not over a fixed sequence but
over the sequence of mappings {s(z)} /= ;}H.

The @Q-value and the value function are related as follows:

Qr(z,u) = g(z )+E Vier1(2 )}z u]

kaﬂ SN zu)ds, (10)
and
Vi =
k(2) u?}}fl) Qr(z,u).
Thus, the optimal control policy is also formed as
1% (2) = arg min Qp(z, u). (1)

uelU(z)

The main idea of RMC methods is to determine ; ()
from (11) for k € {K — 1, K — 2,...,0}, by approximating
Qr(z,u) for each u € U(z) and for all z € Z through
Monte Carlo simulations of the right-hand-side of (10). To
simplify the introductory discussion of RMC, we assume for
now that the control action space U(z) is the same for all
z € Z and hence refer to it simply as U. In RMC, the
continuation costs are estimated in reverse chronological order
by regressing sample continuation costs onto statistics derived
from the starting points in a stochastic mesh Z < Z that is
generated at the start of the algorithm and is fixed over time.
Moreover, in RMC, one generates a single realization of the
continuation cost for each of the M points in the stochastic
mesh Z = {z(1) 22 . (M)} and for each control action
in U and then carries out cross-sectional regression to fit the
entire map (z,u) — Qk_1(z,u). For now we take Z as a
given quantity and discuss the selection of this quantity in the
section that follows.

The use of a single Monte Carlo simulation for each point
in Z differs from the state space quantization method of
Section III-A, where one estimates the expectation in (10) by
generating [V, scenarios for each state z € Z and each control
action u € U at time k and then taking the empirical average.
While this is reasonable for a single point, it is impractical
to do so for each control action in U and point z € Z, as
this would require N, M Ns; Monte Carlo simulations, where
N, = |U| and M is typically large for sizable state spaces,
e.g., those having dimension n > 5. Thus, whereas the state
space quantization method yields a pointwise estimate for the
value function using multiple Monte Carlo simulations at each
point in Z, RMC utilizes regression to produce a parametric
form of the (Q-value based on a single Monte Carlo simulation
for each point in Z.

In RMC, the algorithm begins at time k = K — 1 by gener-
ating a “noisy” instance of the continuation cost Qx—1(z,u)
for each of the points in Z and for a particular control action
u € U. These samples of the continuation cost are denoted by

g™ and are given by

) =g () 9 (7))

where each z(’ “) is a Monte Carlo sample of the state at
time K starting from each of the points z(¥) € Z at time
K — 1 and applying control action u to each of these points.
In the preceding equation we have appended the subscript
K — 1 to each of the points in Z to distinguish them from
future states. Furthermore, in this context, “noisy” refers to the
stochastic uncertainty in the state transition probability distri-
bution p(zk+1 | 2k, ug). At this p01nt one regresses {q(z o
onto statistics derived from {szl} in order to generate an
approximation Q Kk—1(z,u) to the corresponding continuation
cost Qx—_1(z,u). As the regression step is crucial to the
performance of RMC, this will be addressed in one of the
following sections.

Once this is done for each u € U, the approximately optimal
policy at time K — 1 is then given by
fiic1(2) = arg min Qg —1(z, u),
uelU
where in general the notation Qk(z,u) denotes the estimate
of the continuation cost at time k obtained through regression.
Similarly, fi}(z) refers to the estimate of the optimal policy

map at time k. In standard Monte Carlo value iteration one
would note that

VK_l(z) = min QK_1(Z,U)
uelU

and repeat the same procedure for £ = K — 2 by substituting
Vi _1(z) for Vic_1(2) in (10). However, this practice generally
leads to rapid error accumulation. To minimize this, RMC
focuses on approximating the optimal policy map p () rather
than the continuation cost. More specifically, at each time
k one simulates a single trajectory for each point zj in the
stochastic mesh Z using control action w at time k and
implementing future controls based on the newly constructed
policy map /if (z), where t € {k + 1,k +2,..., K — 1}. One



then sums the associated stage costs to generate a “noisy”
sample for Q(z, u), which is denoted by (j,(:"") and is an exact
realization of the pathwise cost based on the policy constructed

so far. In general, for k € {0,1,..., K —2}, q,(j’“) is given by

K—1
i =g (A7) + o () + 2 9 (3417),
t=k+1

where u; = [if(z). As in the case of k = K — 1, one
then regresses the values of these sample continuation costs
onto statistics derived from the corresponding points in the
stochastic mesh Z to generate an approximator Qk(z, u) for
the continuation cost at the current time k. Once this is done
for each v € U, the optimal policy is formed in the same
manner as when & = K — 1. The algorithm then marches
backward in time, repeating the same procedure of Monte
Carlo simulations and regression until reaching time k£ = 0.

The overall produce described above is given by Algo-
rithms 1 and 2 and has an overall computational complexity of
O(K?MN,). In a typical implementation, the inner for loop
of Algorithm 1 is computed in parallel while the outermost
for loop of Algorithm 2 is eliminated through the use of
vectorized operations, i.e., the procedures described within the
loop are performed on all elements of the stochastic mesh
at (practically) the same time. Two key components of the
algorithm must be selected to obtain acceptable performance,
namely the stochastic mesh Z and the regression type used.

Algorithm 1 Regression Monte Carlo
Require: Set Z containing M states in Z
1: Ny < |U|
2fork=K-1,K—2,...,0do
3: for {=1,2,...,N, do
4: Using Algorithm 2, generate cumulative cost re-
alization vector ¢ € RM corresponding to control
action ul) e U

5: Regress ¢;’s against statistics derived from each
2\ e Z to determine Qy(z, u®)
6: end for
7: end for
8: return ()-value approximators Qk(z, u), where k €
{0,1,..., K — 1}

2) Forming the Stochastic Mesh: In traditional RMC, the
stochastic mesh Z corresponds to a collection of simulated
paths {z(()z}(} where i € {1,2,..., M}, that are generated with
an initial policy u,(co) (z) starting from a collection of initial
conditions {="}. Here, =} denotes the i"" realization of the
Markov Decision Process zp, 21, - . ., 2 With initial condition
zg') and feedback law wuy = uko)(z). Thus, Z is in reality
a time dependent quantity in traditional RMC and is equal
to {z,(cl),z,(f), . .,z,(CM)} at time k. As with any regression,
a higher concentration of samples in a given neighborhood
improves the prediction accuracy therein. Hence, one major
source of influence on the performance of the resulting policy
map /i (z) is the initial policy map u,io)(z), since it steers
the stochastic evolution of the states to generate the stochastic
mesh {2} }. Therefore, an initial policy map close to the

Algorithm 2 Generate a sample of the pathwise cost for each
point in Z

Require: Set of states Z < Z; control action u® e U; time

index k; Qrr1(2,u), Qraa(z,u),..., Qx—1(z,u) if k <

K —2.
1. M« |Z|
2:. fori=1,2,...,M do
3 Sample () ~ p(2' | 2, u(®), where 2() € Z
4 g g(z0)+g(20)
5: if £ +1 < K then
6: fort=kFk+1,k+2,..., K—1do
7: (1) 30
8: u* = arg min Q4 (2, u)

uelU

9: Sample () ~ p(z| 2V, u*)
10: g — ¢ + g (V)
11 end for
12: end if
13: end for

14: return ¢ € RM

optimal will lead to re-simulation trajectories in Algorithm 2
that lie close to the original trajectory set where the prediction
accuracy is highest; otherwise, one is forced to perform
extrapolation with the Q-value approximators Q k(z,u), which
may lead to large errors.

To circumvent the need and influence of an initial policy
map, we propose choosing a set Z < Z for which the
majority of trajectories corresponding to the optimal controller
u*(z) will always remain close to this set in some sense.
This avoids extrapolation in the regression-based prediction of
the continuation cost, and hence, in principle, the prediction
accuracy should remain sufficient for choosing the correct
control action. Moreover, with intuition and insight into the
problem, one can construct Z to have a majority of the samples
near the steady-state optimal trajectories. Thus, we take the
stochastic mesh Z to be randomly generated at the start of
RMC according to some distribution over the state space. One
may also generate deterministic grids for Z, as is common
for the state space quantization method of Section III-A;
however, the dimensionality of the problem may hinder such
an approach.

3) Regression: The regression type used is crucial to the
performance of RMC because inaccurate estimates of the -
value lead to incorrect control decisions. One should note that
in Algorithm 2, at time k = 0, running the forward simulations
to generate samples of the pathwise cost requires K sequential
samples of the state transition probability for each point in Z.
Moreover, as k decreases in Algorithm 1, the variance of the
pathwise costs increases, and accordingly, robust / regularized
regression is required to mitigate these effects.

A number of solutions are available to deal with the said
challenge, and include such techniques as radial basis func-
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Fig. 7. Partitioning scheme for L = (2,2) and ¢(¥ ~ N(0,C) with C €
R2X2 Here, i € {1,2,..., M} with M = 1,200, ¢1,1 = c2,2 = 10, and
c2,1 = c1,2 = 2. The black rectangles indicate the individual domains. The
split in the {1 coordinate happens roughly at zero to divide the number of
points in half, while the splits in the {2 coordinate further subdivide the points
such that each bin contains 300 samples.

tions, smoothing splines, neural networks, multivariate adap-
tive regression splines (MARS), ¢ -regularized regression, ran-
dom forests, and others. Each approach has its own tradeoffs in
regard to tuning, computational requirements, scalability (both
in the number of observations and dimensions), and predictive
power, and we refer the reader to [28] for a detailed overview
of each approach.

We adopt here a particularly effective technique that is
inspired by [22] and involves building a k-d tree for the initial
condition set Z and applying least-squares regression at each
leaf. In particular, one takes L; partitions of the 5™ component
of the state vector, such that there are a total of N, = I j L,
partitions of the state space, each having the same number of
samples. One should also take care to bound the domain of the
local functions at each leaf for the purposes of extrapolation,
which we discuss later. This entire process is illustrated in
Figure 7 with a 2-dimensional example, where the bounds
of each domain, denoted by D, for ¢ € {1,2,...,N,}, are
determined by the outermost points along each direction. In
the presence of outliers, one may also wish to either remove
the outliers before setting the domain limits or limit the domain
to a fixed number of standard deviations along each direction,
where standard deviation is computed using only the particles
at the given leaf. We employ the former practice, which is
illustrated in Figure 7. The overall domain is D := | J, D;.

The algorithm scales well with the number of sample points
M, which we take to be a multiple of NV,. However, it
is exponential in the dimension n and is hence suited to
moderate dimensional problems. The original algorithm from
[22] fits linear models at each leaf using standard least squares;
consequently, the fits are not robust to the high variance
samples and have a limited ability to capture nonlinearities in

the continuation cost. To address these limitations, we propose
using an ¢;-regularized quadratic fit in each partition.

Let Z, < {1,2,...,M} denote the subset of the indices
of the particles that belong to partition ¢, with |Z,| = m =
M/N,. Furthermore, with Z, = {i1,d2,...,0y}, we take
y© = (Giy» Gins - - - Qi,,,) € R™. Here, g; is the pathwise cost
sample that is generated from Algorithm 2 and associated with
state 2(Y € Z = R™, where i € 7,. Additionally, we denote by
H® e Rm™*Nov the predictor matrix, where Ny, = n+n(n+1)
is the number of basis functions, not including the constant
term. Thus, the rows of the predictor matrix take the form
HY = hT(2"), where h : R® — R is used to evaluate
the quadratic basis functions for each point z(*) in partition £.
We assume that the regression equation is of the following
form

yO = HOBO 4 407 | 4 O,

Here ¢() € R™ is the vector of residuals in partition £,
1,.x1 is an m-length vector of all ones, and ﬁél) € R and
5O (55“,5507...,5552) e R™ are the coefficients to
be determined in the regression. To determine the regression
coefficients in a robust fashion, we minimize

[y = B sy — HOBO 5 + 2|81,

where A > 0 is a tuning parameter. As noted in §3.4.4 of
[28], this problem can be solved in the same time complexity
as regular least squares, and hence it is suited for repeated
use in the partitioned regression scheme, i.e., for each ¢ €
{1,2,...,Np}.

Once the regression coefficients have been determined, then
the estimator for the (Q-value in Algorithm 1, takes the form

Qulz,u) = B h(z)y + BS5Y, 2n e Dy

where ( , ) denotes inner product, h(z;) € R™ is the
aforementioned mapping that forms the rows of the predictor
matrix H®), and ¢ is the index of the partition D, to which
21, belongs. Also, we have indicated the dependency of the
regression coefficients on both the time k£ and the control
action u, which had been temporarily omitted for simplicity.

Ideally, the controller keeps the steady state trajectories in
the domain D; however, in the case that extrapolation must be
performed, one should be wary of the behavior of the quadratic
fit outside D. Thus, if z ¢ D, we evaluate Qi (z,u) at the
point in D closest to z using the 1-norm, as we have found
this practice to produce satisfactory performance. Moreover,
we expect the partitioned quadratic fits to interpolate well in
the domain but avoid their use for extrapolation.

IV. REGRESSION MONTE CARLO FOR TARGET TRACKING

We now specialize the algorithms described in Section III to
the problem of vision-based target tracking. In particular, we
first present an adaptation to Algorithm 1 that addresses the
fact that some of the components of the state space described
in Section II-D were discrete. Next, we describe the stochastic
mesh Z, and finally, we discuss a modification to the cost
function that makes it radially unbounded, thereby ensuring the
distances of the UAVs relative to the target remain bounded.



A. Modified Algorithm

Since the state space of the stochastic kinematic model
of the UAV described in Section II-B had a few discrete
components, the standard RMC algorithm must be slightly
modified for the application of vision-based target tracking
with two UAVs. In particular, we need to run Monte Carlos
simulations for all roll-angle pairs r belonging to a finite
set C = C? combined with all (finitely-many) allowable roll
action pairs u € U(r), where C = {r(1) ) p{Nr)Y

U(r) ==U(ry) x U(rs),

and N, = |C|] = 15 (versus 5 x 5) due to symmetry
arguments discussed in the appendix. To accommodate these
modifications, we remove the roll states from Z and denote
the resulting continuous state space by X = R7, where X € X
is given by

X = (plaPQaU)

and p; is described in Section II-D. The resulting stochastic
mesh described in Section III-B2 is denoted by X.

The modified RMC algorithm for vision-based target track-
ing with two-UAVs is presented in Algorithm 3. The primary
differences with respect to Algorithm 1 is the addition of
a for loop over all discrete-valued states, as well as the
formation of the full initial condition set Z from the set X
of continuous initial condition states and the given roll-angle
pair 7 € C. Furthermore, the regression is performed using
only the continuous states in X, and thus the dimensionality
of the regression problem is reduced to n,, = 7. In practice, the
two innermost loops are often combined and run in parallel for
increased computational performance. On a final note, when
generating the cumulative cost samples for each roll action
with Algorithm 2, one should replace U with U(r) in the
requirements section and U with ¢/ (()) in Line 8.

B. Stochastic Mesh

While modified RMC approach offers significant compu-
tational savings over a basic Monte Carlo method for value
iteration, it generally requires adjusting the initial condition
set and the regression to obtain satisfactory performance. Thus,
we now describe the initial condition set X of Algorithm 3
that comprises the continuous states. For UAV j, if the
relative position states of (X3;j_2,X3;_1) are represented in
polar coordinates as (p; cos¥;, p;sind;), then we take p;
to be normally distributed with mean p, > 0 and variance
o’ and ¥J; to be uniformly distributed on [9,9]. Typically,
(8,9) = (—m, 7). However, if one exploits symmetry per
the discussion of the appendix, this need not be the case.
Also, in the process of generating N samples of p;, we
only retain those samples that have strictly positive values
and those that are within 30 of the mean, as the the outer
boundaries of the partitioning domain are set in the manner
discussed and illustrated in Section III-B3. Next, we take
X3;, the relative heading angle of UAV j, to be uniformly
distributed on [—m, 7] and the target speed X; = v to be
uniformly distributed on [v, ], where v and v are discussed
in Section II-C. Moreover, at the start of Algorithm 3, we

Algorithm 3 Regression Monte Carlo for Target Tracking

Require: Initial condition set X = R7, where |X| = M; set
of roll-angle pairs C = C?; action space U(r)
1: N, « ‘C|
2fork=K-1,K—-2,...,0do
3: for s=1,2,...,N, do

4: Form initial condition set Z from X, such that for

each X = (p{V p{ v} e X, the following
relationship holds:
20 = (p(li),rgs),p(;),rés),v(i)), where i €
{1,2,..., M}

5: Ny — ‘Z’{(T(S))‘

6: for /=1,2,...,N, do

7: Using Algorithm 2, generate continuation cost

realization vector g € R by applying control

action u®) € U (r(®)) to each point 2 € Z
8: Regress ¢;’s against statistics derived from

corresponding X(9’s to determine Qy(z, u(®)
9: end for

10 end for

11: end for

12: return (-value approximators Qk(z,u), where k €
0,1,.... K — 1}

generate M samples of the continuous states in the manner
just described to form X = {x( x@ xOD} where
the mean p, and variance o> of the radial distribution of
the relative planar position states are tuning parameters set

beforehand.

C. Barrier Function

While in the single UAV case, the stage cost given by
(5) directly penalizes distance from the target, this is not the
case for both agents in the two-UAV scenario. In particular,
having UAV 1 directly above the target and UAV 2 far away is
only slightly worse than having both UAVs directly above the
target, since the smallest planar UAV distance from the target
is the dominant factor in the fused GEC. This is illustrated in
Figure 8, where the range of trace values is drastically smaller
than that of Figure 6. This disparity in the range of trace values
arises from UAV 1 having zero planar distance from the target
in Figure 8 and a planar distance of 100 [m] from the target in
Figure 6. Moreover, UAV 2’s position has an almost negligible
effect on the fused GEC in the former scenario while in the
latter scenario its position has a considerable impact on the
fused GEC. Overall, this suggests that the cost function is not
radially unbounded with respect to the second UAV’s planar
distance from the target.

To avoid using the ()-value approximators far from the
stochastic mesh, we added a barrier-type function to the
stage cost that is non-negative, radially unbounded, and only
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Fig. 8. Cost function g(z) = trace(P) with the target located at the origin
and the first UAV located on top of the target at an altitude of 40 [m]. Note
that the separation angle + is O since the first UAV’s planar distance is p1 = 0;
consequently, the fused GEC is completely characterized by the second UAV’s
planar distance p2 from the target. The second UAV has an altitude of 45 [m].

nonzero for large distances. Hence, we present the following
augmented cost function to be used in the dynamical optimiza-
tion of Algorithm 3:

gv(2) = trace(P) + b(z), (12)

where
2
b(z) = Z max{0, p; — (1p + 20,)},
=1

p; denotes UAV j’s planar distance from the target, and p,
and o, are the mean and standard deviation of the normally
distributed planar distances from the target that form the initial
condition set described in Section IV-B. While the barrier
function b(z) penalizes trajectories where the UAVs wander
very far from the target, it has a negligible effect along optimal
trajectories, which should remain close to the target.

V. RESULTS

We now study the nature of the optimal coordination
strategy and the effectiveness of the modified RMC approach
in the optimal coordination of two UAVs to perform vision-
based target tracking in a stochastic environment. To establish
the benefit of the proposed control approach, we compare the
performance of our (approximately) optimal controller against
an effective baseline strategy, as well as the previously pro-
posed approach of coordinated standoff tracking. Additionally,
we seek to gain insight regarding the optimal control policy to
understand the predominant behavior of the two fourth-order
UAVs, as they cooperatively track the stochastic ground target.

A. Problem Setup and Solution Parameters

Throughout this section we extensively analyze the results
of a fairly realistic tracking scenario that is summarized by
the parameters pertaining to the target and UAVs provided in
Tables I and II, respectively. The scenario is similar to that
considered in [2], wherein Collins et al. presented field test
results for a single UAV (capable of 15 — 20 [m/s] airspeeds)
tracking a target that traveled between 5 — 10 [m/s].

The parameters pertaining to the general dynamical op-
timization of Section II-F are presented in Table III. The

TABLE II
PARAMETERS IN STOCHASTIC UAV DYNAMICS
Parameter Description Value Units
s nominal airspeed 18 m/s
o2 airspeed variance 16/25 m?/s?
Qg gravitational accel. 9.81 m/s?
c roll command set {0, +A, £2A} deg.
A max roll change 15 deg.
TABLE III
GENERAL PARAMETERS
Parameter Description Value Units
Rs sensor attitude covariance ~ 9I3x3 deg”
(h1, h2) UAV altitudes (40, 45) m
Ts zero-order hold period 2 S
K planning horizon 15 -
TABLE IV
RMC PARAMETERS
Parameter Description Value
m samples per partition 10,000
L partitioning scheme (2,2,4,2,2,4,2)
A regularization parameter 3
L radial distribution mean 70
Uﬁ radial distribution variance 352

planning horizon of KT, = 30 seconds was chosen so that,
within this time, the UAV could perform a loop at max bank,
which for a maximum turn rate of wmyx = ogtan(2A)/s
[rad./s] is approximately 20 seconds. With the 30-second
horizon, the optimization takes into account long-term impact
of committing to a loop, as the control policy /i}(z) is applied
in a receding horizon fashion, i.e., we always apply i&(z) at
every time step.

The parameters pertaining to the RMC solution are pre-
sented in Table IV, where the augmented cost from (12) was
minimized using Algorithm 3 along with the techniques for
computational savings presented in the appendix. However,
throughout this section the terms cost and stage cost refer
to the original cost function given by (5), which is simply
the trace of the fused GEC. Also, we henceforth refer to the
resulting policy as the optimal policy with the understanding
that this policy is in reality an approximation to the true
optimal policy.

Regarding the regression, each partition had 36 degrees
of freedom in the quadratic regression, as the dimension of
the continuous state space X is 7. Hence, we chose m (the
number of samples per partition) to avoid overfitting, while
the regularization parameter A was chosen to add robustness
to process noise, where A € [3,10] constitutes a considerable
degree of regularization and generally works well. Regarding
the partitioning scheme, recall that L € N7 is the vector
denoting the number of partitions for each component of
the continuous state space X, and hence the total number
of partitions is N, = ]_[j L; = 512, though one does not
need to estimate the (J-value in more than 320 partitions



according to the symmetry considerations of the appendix.
Thus, the size of the stochastic mesh X is M = 3.2 - 106
since M = mL. Note that choosing 2 partitions for the relative
x and y coordinates implies that the partitions of the planar
positions correspond (approximately) to standard Cartesian
quadrants, since the 2-dimensional distributions that generate
the individual (planar) position samples of the initial condition
set are radially symmetric per the discussion of Section IV-B.
The mean and variance of the normally distributed planar
distances are also given in this table. Also, we have found
that the relative heading coordinates are the most sensitive to
the number of regression partitions (due to the nonlinearity)
and hence choosing L3 or Lg to be less than 3 typically yields
poor performance. Through considerable testing, we found that
this particular partition configuration is a good compromise
between computational feasibility and mitigating the effects
of the nonlinearity through additional partitions.

To highlight key features of the optimal trajectories, we
have provided a representative sample trajectory in Figure 9
and the corresponding performance parameters in Figure 10.
From Figure 9, one should note how the optimal trajectories
comprise both sinusoidal and orbital trajectories, where the
latter is not necessarily centered around the target. At the
beginning of the simulation, one UAV is performing an “S”
turn (sinusoidal pattern) while the other is performing a loop.
The UAVs switch roles and perform the same joint maneuver
before both UAVs make out-of-phase loops and then out-of-
phase “S” turns. From the top plot in Figure 10, distance
coordination becomes apparent, as the peaks of the distance
curves alternate. The second subplot of this figure indicates
that the UAVs do not strive to maintain orthogonal viewing
angles, as the curve does not cluster around v = 90°. However,
the UAVs do benefit from orthogonal viewing angles when
they are both moderately far, e.g., t = 82 [s], where the cost is
kept from spiking by such a configuration. Overall, minimum
distance is the dominant factor in the cost function, though
viewing angle coordination does benefit the UAVs when they
find themselves moderately far from the target.

While this particular instance of a controlled stochastic pro-
cess does not establish distance coordination as the predomi-
nant coordination strategy, it does illustrate typical behaviors
encountered with this policy. Namely, the optimal trajectories
comprise a rich mixture of sinusoidal and orbital trajectories
that occasionally pass over or near the target rather than just
a single trajectory type, which is the primary goal in the vast
majority of the target tracking literature.

B. RMC Performance

We now compare our RMC solution against alternative
control strategies that roughly consider the same problem
formulation. In particular, we first compare the strategy with
two UAVs that are running uncoordinated optimal policies, and
secondly we compare the strategy with the common approach
of coordinated standoff tracking.

1) Comparison with Uncoordinated Optimal Controllers:
To generate an appropriate uncoordinated baseline strategy, we
solve the stochastic optimal control problem of Section II-F

500r 1
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Fig. 9. Optimally coordinated trajectories over a three minute window. The
starting positions of all vehicles are marked by an “o” while the ending
positions are denoted by an “x”. The target (denoted by 7T) begins at
the origin travelling at approximately 5.4 [m/s] and finishes its trajectory
travelling at approximately 7.3 [m/s]. Both UAVs (denoted by A; and A2)

begin with zero roll.
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Fig. 10. Performance metrics of optimally coordinated UAVs: planar distances
pj, separation angle v, and trace of the fused GEC P.

for a single UAV and then apply the same optimal control
law for the two UAVs independently. Since the problem for a
single UAV has modest dimension, one can solve it using the
basic Monte Carlo solution of Section III-A. As a result, we
performed value iteration according to Section III-A to gener-
ate two individual control policies with the cost function (5)
and the parameters of Table III. We used M = 1,000 Monte
Carlo samples in (9) with a finite state space Z described by
Table V. We denote the resulting policies as " (¢{) and
771(@2)( 22)), where k € {0,1,..., K — 1}, ¢V = (py,7r1,0),
¢® = (pa,r2,v), and p; is defined in Section II-D. As
in the case of coordinated UAVs, we always apply these
policies in a receding-horizon fashion, i.e., we always use



TABLE V
STATE SPACE DISCRETIZATION IN ONE-UAV SCENARIO
Set Description Value Units
Y relative positions  {—225,—220,...,225} m
) relative headings {0,15,...,345} deg.
C roll commands {0, +£15, £30} deg.
W target speeds {4.5,5.0,...,12.5} m/s
Z discrete state space Y2x U xCxW -
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Fig. 11. Uncoordinated trajectories over a three minute window. The starting
positions of all vehicles are marked by an “o” while the ending positions
are denoted by an “x”. The remaining notation, initial conditions, and target
trajectory are the same as in Figure 9.
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Fig. 12. Performance metrics of uncoordinated UAVs: planar distances p;,
separation angle -y, and trace of the fused GEC P.

the time-stationary policies 71'(()1) ((,(Cl)) and 77(()2) (( ,22)) for the
uncoordinated UAVs for all k € Z~,.

To illustrate the nature of this control strategy, we have
provided plots in Figures 11 and Figures 12 illustrating the
behavior and performance of uncoordinated controllers for

the same initial conditions and target trajectory realization
as in Figures 9 and 10. While each UAV minimizes its own
individual GEC, we plot the fused covariance in the bottom
chart of Figure 12. The most noticeable feature of Figure 11
is the fact that the UAVs primarily make orbital trajectories
around the target, which enables them to keep their worst-
case distance from the target smaller. This is confirmed by
the top chart of Figure 12, where the peak planar distance
from the target is approximately 114 [m], whereas that of
Figure 10 is approximately 150 [m]. One can also see the
lack of coordination for ¢ € [126,132], as the cost is above
100 during this time period when both UAVs are moderately
far from the target and have viewing angles that are quite
far from being orthogonal. On a final note, the time-averaged
cost for this run was approximately 39.6 [m?] while that of
the coordinated control policy was 32.4 [m?]. It is interesting
to note that coordination allows the UAVs to deviate further
from the target without sacrificing performance. Of course, this
deviation must be done in an alternating fashion, as illustrated
by the distance curves of Figure 9.

To better demonstrate the temporal nature of both control
strategies in an expected sense, we have selected an initial
condition that is a good starting point for both strategies and
run 50, 000 Monte Carlo simulations from this initial condition
with the same realizations of target trajectories to compute
both the mean value and 98‘h-percentile statistics of the cost,
which are provided in Figure 13. By inspecting Figure 13a, one
can see that the optimal control policy converges to the mean
steady-state cost of (approximately) 35 [m?] within one minute
while the uncoordinated controllers take nearly 2 minutes to
converge to the mean steady-state cost of (approximately) 38
[m?]. In addition, the peak average value is significantly less
in the case of the optimal coordinated control policy than in
the case of uncoordinated policies. Note that the distribution
of steady-state costs is independent of the initial conditions.

Another benefit of the coordinated control policy can be
seen in Figure 13b, where the plot indicates that the tail of
the steady-state cost distribution is often significantly wider in
the case of uncoordinated policies. In fact, the 98"-percentile
of the steady-state costs for the uncoordinated policies is
about 33% higher than that of the optimal policy. Moreover,
although we have illustrated transient response performances
for a specific initial condition, the plots in Figures 13a and
13b illustrate typical benefits of the optimal control policy.
Namely, with coordination, the recovery from initial conditions
is typically faster (in an expected sense), and the tail of
the cost distribution is significantly smaller in steady state,
which entails that high cost events are more rare than in the
uncoordinated case.

To provide a more objective comparison, we have performed
another test over a wide range of initial conditions. More
specifically, we generated M = 50,000 initial conditions
randomly according to Section IV-B and then ran 12-minute
Monte Carlo simulations with each control strategy from
these initial conditions using the same realizations of target
trajectories for each approach. To reduce the effects of initial
conditions, we truncated the first two minutes of each run.
Computing the sample mean (over time) of the stage costs
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Fig. 13. Transient response for initial condition 2o =
(—60,0,—m/2,—-30°,0,—60,0,—30°,8.5), where 2z, = z(kTs). In

this initial condition, the UAVs have orthogonal viewing angles and are
banked max left at a distance roughly equal to their minimum turning radius
of 57.2 [m]. The lighter, thinner lines indicate the 95% confidence intervals
for the given statistics.

associated with each run yields the histogram presented in
Figure 14. Hence, whereas the previous test illustrated the
first few minutes of a transient response and computed certain
statistics across samples, here we are computing the mean over
time with the first few minutes of each simulation removed.
In this plot, the sample mean and sample standard deviation
of the time-averaged costs associated with the optimal policy
are 34.91 [m?] and 2.33 [m*], respectively; those associated
with the uncoordinated control policies are 37.92 [m?] and
4.09 [m*], respectively. Furthermore, the standard error of
the mean is less than 0.02 [m?] in both cases. One can
observe that, while the optimally coordinated control policy
reduces the mean of the time-averaged costs by only about
8%, it reduces their standard deviation by nearly 43%. This
reduction in standard deviation is illustrated by the widths
of the distributions, which is considerably less in the case
of the optimally coordinated strategy. Thus, the optimally
coordinated control policy improves the predictability of the
tracking performance substantially.

One final comparison is provided by plotting the histogram
of the steady-state costs with the effects of time-averaging re-
moved. More specifically, in Figure 15 we provide a histogram
of the stage costs given by (5) at each time step for each of the
M = 50,000 ten-minute Monte Carlo simulations in steady
state. The number of counts is presented with a logarithmic

Bl Uncoord.
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20 30 40 50 60

Fig. 14. Histogram of the stage-cost mean g(*) = (1/301) Ziﬁzoeo g(z]?)) for
10-minutes of steady-state behavior with 50,000 Monte Carlo simulations.
The outliers for the uncoordinated policy are not all shown, as they extend
out to nearly 73 [m?2].
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Fig. 15. Histogram of the stage-cost (not averaged over time) for 50, 000,
10-minute Monte Carlo simulations. The outlying costs of the uncoordinated
policy are not all shown, as they exceed 2,000 [m?].

scale to focus on the tails of the distributions. One can see
that the tail of the cost distribution corresponding to the un-
coordinated policies decays slower than that corresponding to
the optimally coordinated policy. This plot highlights that rare
events are less frequent and less severe with the coordinated
control policy than with uncoordinated control policies. In
fact, for stage costs exceeding 400 [m?], the frequency of
such costs with the coordinated control policy are an order
of magnitude lower than with the uncoordinated policies.
Since we expect the controlled processes to be ergodic, these
histograms are representative of a single very-long run for
each of the cooperative tracking approaches, e.g., a run lasting
hundreds of hours.

2) Comparison with Standoff Tracking: To establish a fair
comparison with the standoff tracking approach, we note that
the minimum allowable standoff distance, o5, imposed by the
maximum bank angle ¢nax, is given by Equation 5.37 in [3]



as follows:
(v+s)?
ag tan(@max)’

where v, s, and «, denote target speed, UAV airspeed,
and gravitational acceleration, respectively. With the target
traveling at the minimum allowable speed of 4.5 [m/s] and
the remaining parameters given in Table II, we have

(4.5 + 18)?
25 2 9.81 tan(307/180)

In an ideal setting for standoff tracking, the target is traveling
at a constant velocity and the UAVs have orthogonal viewing
angles at the nominal standoff distance of o, = 90 [ml].
Hence, with the altitudes of Table III, trace(P) ~ 46 [m?].
Recalling that both the time-averaged cost and ensemble-
averaged cost of the optimal policy in steady state (over many
target velocity realizations) were both approximately 35 [m?],
one can see that the optimally coordinated policy offers a
significant advantage in terms of average cost, even in this slow
target scenario. If the target were instead traveling at v = 9
[m/s], or half the UAV’s airspeed, standoff tracking requires
0s = 128.7 [m] according to (13). Thus, with ps = 129 [m],
trace(P) ~ 92.2 [m?], and we have that the average steady
steady cost of the optimal policy is nearly 2.5 times less
than that of ideal standoff tracking. Of course, constant speed
aircraft cannot hold a 90° separation angle at a fixed nominal
distance from a constant velocity target, nor does a target travel
at a fixed velocity in a real-world setting. Thus, the numbers
presented here for standoff tracking are optimistic.

Overall, the stochastic optimal control approach presents
substantial improvements in performance over standoff track-
ing when the cost is the fused GEC. Recall that the fused GEC
is determined by three degrees of freedom, namely the UAV
distances p; and their separation angle . Accordingly, when
one proposes a standoff tracking approach, one loses two of
these three degrees of freedom, namely the UAV distances,
which are the dominant factors in the cost function. Hence,
the performance one can expect from standoff tracking is
inherently limited. Thus, while certain applications might re-
quire a minimum standoff distance, the degradation in tracking
performance with vision sensors is substantial and perhaps
warrants the use of alternative sensors, e.g., radar, though such
equipment may require larger UAVs.

0s = (13)

~ 89.4 [m].

C. Nature of Optimal Solution

Since we have established the benefits of the optimal policy,
we now seek to understand its behavioral qualities. We again
use the uncoordinated strategy to generate baseline statistics.
We utilize the M = 50,000 Monte Carlo simulations that were
described at the end of Section V-B1 to generate Figures 14
and 15. Recall that each simulation comprises a ten-minute
trajectory in steady state.

To assess the level of viewing angle coordination, we have
generated the histogram of Figure 16. From this figure, one can
see that the optimal control strategy yields orthogonal viewing
angles more often than collinear viewing angles, which occur
either when v = 0° or v = 180°. Even so, while orthogonal
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Fig. 16. Histogram of the separation angle - incurred by the optimal policy
during steady-state at each time step and for each of the 50,000 ten-minute
Monte Carlo simulations.

viewing angles occur nearly twice as often as v = 0° with
the optimal coordinated control policy, they are only 23%
more frequent than v = 180°. Additionally, the distribution
is not nearly an impulse function at v = 90°, as would be
achieved in an ideal setting with coordinated standoff tracking.
In fact, the mode of the distribution occurs near v = 111°.
Moreover, we conclude that viewing angle coordination is
certainly facilitated by the optimal policy but is not necessarily
a dominant behavior.

We now assess the level of distance coordination achieved
by the optimal policy in comparison with the uncoordinated
strategy. To do this, we have smoothed the scatterplot data
of the 15.05 million UAV distance pairs to estimate the joint
probability density function of planar UAV distances for each
control strategy. The results are provided in Figure 17. The
joint density function corresponding to uncoordinated policies
in Figure 17a is nearly circular around (p1,p2) = (80, 80),
which is not surprising since we expect the uncoordinated
policies to be equivalent to statistical uncorrelation. However,
the joint density function corresponding to the optimal policy
in Figure 17b is significantly elongated and shows strong
anti-correlation, which indicates that when one UAV is far
from the target, the other is most often fairly close to the
target. These plots also show that uncoordinated policies
generally keep each UAV’s distance below 115 meters while
the optimal coordinated policy keeps each UAV’s distance
below 140 meters, as indicated by the maximal values of p;
and p, associated with the turquoise regions of the probability
density estimates. This demonstrates the desired effect of
the barrier function of Section IV-C, which becomes active
beyond a planar distance of 140 [m] in the computation
of the optimal coordinated policy and thus deters individual
UAVs from wandering unnecessarily far from the target.
Overall, while intuition suggests that minimizing each UAV’s
individual worst-case distance from the target might be the
best strategy based on the fused covariance’s sensitivity to
distance, it is the coordination of distances that yields optimal
performance since Figure 14 is effectively the projection of
the two dimensional plots in Figures 17a and 17b into one
dimension based on the trace(P) functional. Hence, from
this test, we conclude that the coordination of distances is
the predominant behavior of the optimal control policy.
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Fig. 17. Joint probability density of UAV distances p1 and p2, as determined
through Gaussian kernel smoothing. The heat maps range from dark blue to
dark red, corresponding to low and high density regions, respectively. (For
interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

VI. CONCLUSION

We have presented and studied an effective solution to the
problem of optimally coordinating two fixed-wing UAVs to
gather the best joint vision-based measurements of a randomly
moving ground target. An analytic expression was utilized for
the fused geolocation error covariance (GEC) associated with
the vision-based measurements, and stochastic fourth-order
models were employed for all vehicles to capture realistic
system dynamics. While this degree of realism is desirable
from a practical point of view, it also renders a 9-dimensional
stochastic optimal control problem for which grid-based solu-
tions are impractical. Hence, we presented a simulation-based
policy iteration technique known as regression Monte Carlo
and adapted it into a policy generation algorithm to remove the
need and influence of the initial policy map. To promote fast,
reliable regression, we used a partitioned robust regression
scheme that utilizes ¢;-regularized quadratic fits; as a result,
the technique achieves spatial adaptivity and robustness to
process noise while capturing nonlinearities in the ()-value.

We conducted a thorough study of the performance and
nature of the optimal control policy. When compared with
uncoordinated policies, the optimal coordinated policy was
shown to achieve lower average costs with a significant
reduction in the variance of these costs. Hence, the optimal
control policy achieves performance that is not only improved,
but also much more predictable. When compared with ideal
standoff tracking costs determined for a constant-velocity
target at various speeds, both the ensemble average of the
optimal policy’s costs in steady state and the mean value of
its time-averaged costs were shown to be significantly lower.
This can be explained by the fact that standoff tracking does
not take advantage of the two most dominant of the three
factors that determine fused GEC, namely each UAV’s planar
distance from the target. Moreover, while certain applications
might require a minimum standoff distance, the degradation
in tracking performance with vision sensors is substantial and
perhaps warrants the use of larger UAVs that can carry heavier,
active sensors, e.g., radar.

While the optimal policy was shown to facilitate angle
coordination to a slight degree, the stronger, more pronounced
behavior was shown to be the coordination of distances to
the target. The associated optimal trajectories comprise a rich
mixture of sinusoidal and orbital trajectories that occasionally
pass over or near the target. These behaviors differ both from
the standoff tracking approaches that aim to achieve coordi-
nated orbital trajectories centered at the target and the heuristic
approaches of [19] and [20] that aim to achieve out-of-
phase sinusoids passing over the target. Furthermore, distance
coordination is achieved in the presence of stochastic target
motion, thereby offering a significant advantage. Nonetheless,
should one design a heuristic controller for a multi-UAV target
tracking application wherein a minimum standoff distance is
not necessary and the cost is analogous to the fused GEC,
one should focus on distance coordination rather than viewing
angle coordination.

As practical models that have been proven in the field
were employed for the UAVs, a natural next step involves
testing the optimal control policy in the field to validate its
performance. One real-world condition not addressed in this
work is wind, yet light to moderate steady winds can be
merged with the target velocity to form an apparent target
velocity which can then be used in the feedback policy. For
more heavier, stochastic winds, one can incorporate wind
velocity into the system dynamics, though this would increase
the dimensionality of the problem. Nonetheless, since the
problem is still tractable with RMC and because wind can
play a significant role in the performance of small UAVs, this
also remains an open area for future work. Lastly, since the
aim of this work is to reduce the error of the vision-based
position measurements and thereby facilitate more accurate
reconstructions of the full target state with a filter, future work
involves testing how the policy affects state estimates from
filters such as a particle filter or the robust filter of [29].

APPENDIX

When performing modified RMC, one can exploit key sym-
metries in the problem to reduce the computational effort con-



siderably. Firstly, the -value is symmetric about the relative
z-axis in the target-centric state space Z. To describe this, we
introduce the reflection matrix R = diag(lox2®R, 1) € R9X9,
where R = diag(l, —I3x3) € R***. This matrix simply
comprises 2 copies of the matrix R and unity in a block
diagonal fashion. By multiplying the state vector z € Z by the
reflection matrix, we reflect the relative poses of both UAVs
simultaneously about the relative z-axis in the target-centric
state space.

Taking note of dynamical symmetry, we have that
p(2' | z,u) = p(Rz' | Rz, —u). This simply states that dynam-
ics of the UAV’s pose relative to the target are symmetric about
the relative z-axis. Furthermore, since simultaneously reflect-
ing all UAV poses preserves both the UAV-target distances
as well as the separation viewing angle -, ¢g(z) = g(Rz).
Combining these two properties in (10) yields Q(z,u) =
Q(Rz,—u). Moreover, from (11), we have that

pi(z) = —pi(Ra),

which we henceforth refer to as the reflection property.

One can combine the reflection property with two-UAV
symmetry for substantial computational savings. By two-UAV
symmetry, we mean the property that one can simply relabel
the UAVs to account for all possible state configurations when
evaluating the cost-to-go. Note that this practice is in reality
an approximation since the UAVs operate at different altitudes,
although its effects are minor since the altitude difference is
small in comparison to either of the altitudes. As an example
of the two-UAV symmetry, the set of roll-angle pairs C can
be defined as

C::{TGC’Q:mZTg}.

Thus, with n. = |C| = 5 and N, = |C|, the total number of
roll-angle pairs that needs to be considered has been reduced
from N. = n? = 25 to N. = n.(n. + 1)/2 = 15, which is
a significant reduction in the computational requirements of
Algorithm 3.

Also, as mentioned in Section V, the partitioning of the
relative position states for regression is done approximately in
quadrants. With two UAVs, we enforce the position states to
be partitioned as quadrants a priori and ensure that m Monte
Carlo samples from the initial condition set X exist in each
quadrant, where m is the number of samples per regression
partition. With this setup, there are initially 4> = 16 possible
combinations of quadrants (corresponding to the position
states) wherein one needs to perform regression. However, by
applying the reflection property, one can eliminate performing
regression in the following pairs of quadrants: (3,3), (4,4),
(4,3), (3,4), (2,4), and (4,2). Hence, one can eliminate
at least 6L3LgL7N,m = 2880m Monte Carlo simulations,
which is considerable since m is typically on the order of 10%.
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